$$\require{color}$$
$$\require{ams}$$
$$\require{amscd}$$
$$\definecolor{purple}{RGB}{226, 15, 233}$$
$$\definecolor{grey}{RGB}{177, 159, 149}$$
$$\DeclareMathOperator{\mult}{mult}$$
$$\DeclareMathOperator{\df}{def}$$
$$\DeclareMathOperator{\pr}{pr}$$
$$\DeclareMathOperator{\Supp}{Supp}$$
$$\DeclareMathOperator{\ord}{ord}$$
$$\DeclareMathOperator{\Vol}{Vol}$$
$$\DeclareMathOperator{\Im}{Im}$$
$$\DeclareMathOperator{\Ker}{Ker}$$
$$\DeclareMathOperator{\Bs}{Bs}$$
$$\DeclareMathOperator{\Hom}{Hom}$$
$$\DeclareMathOperator{\Alb}{Alb}$$
$$\DeclareMathOperator{\Jac}{Jac}$$
$$\newcommand{\BB}{\mathbf{B}}$$
$$\newcommand{\sDiff}{\mathcal{D}\mathscr{iff}\,}$$
$$\newcommand{\sHom}{\mathcal{H}\mathscr{om}\,}$$
$$\newcommand{\O}{\mathcal{O}}$$
$$\newcommand{\PP}{\mathbf{P}}$$
$$\newcommand{\H}{\mathcal{H}}$$
$$\newcommand{\D}{\mathcal{D}}$$
$$\newcommand{\QQ}{\mathbb{Q}}$$
$$\newcommand{\CC}{\mathbb{C}}$$
$$\newcommand{\RR}{\mathbb{R}}$$
$$\newcommand{\ZZ}{\mathbb{Z}}$$
$$\newcommand{\mfm}{\mathfrak{m}}$$
$$\newcommand{\mc}[1]{\mathcal{#1}}$$
$$\newcommand{\mb}[1]{\mathbb{#1}}$$
$$\newcommand{\mf}[1]{\mathfrak{#1}}$$
$$\renewcommand{\d}{\operatorname{d}}$$
$$\newcommand{\OM}{\Omega}$$
$$\newcommand{\ov}[2]{\overset{#1}{#2}}$$
$$\newcommand{\ext}{\operatorname{Ext}}$$
$$\newcommand{\sing}{\operatorname{Sing}}$$
$$\newcommand{\codim}{\operatorname{codim}}$$
$$\newcommand{\pic}{\operatorname{Pic}}$$
$$\newcommand{\proj}{\operatorname{Proj}}$$
$$\newcommand{\spec}{\operatorname{Spec}}$$
$$\newcommand{\surj}{\twoheadrightarrow}$$
$$\newcommand{\rk}{\text{rank}}$$
$$\newcommand{\supp}{\operatorname{supp}}$$
$$\newcommand{\im}{\operatorname{im}}$$
$$\newcommand{\Div}{\operatorname{Div}}$$
$$\renewcommand{\div}{\operatorname{div}}$$
$$\newcommand{\roundup}[1]{\lceil #1 \rceil}$$
$$\newcommand{\rounddown}[1]{\lfloor #1 \rfloor}$$
$$\newcommand{\cech}{\check H}$$
$$\newcommand{\smaller}{\footnotesize}$$
$$\newcommand{\Exc}{\operatorname{Exc}}$$
$$\newcommand{\length}{\operatorname{length}}$$
$$\newcommand{\Lg}{\mathfrak{g}}$$
$$\newcommand{\Lgl}{\mathfrak{gl}}$$
$$\newcommand{\Lsl}{\mathfrak{sl}}$$
$$\newcommand{\kk}{\mathbb{k}}$$
$$\newcommand{\End}{\mathrm{End}}$$
$$\newcommand{\ad}{\mathrm{ad}}$$
$$\newcommand{\LX}{\mathcal{L}_X}$$
$$\newcommand{\GL}{\operatorname{GL}}$$
$$\newcommand{\Aut}{\operatorname{Aut}}$$
$$\newcommand{\Ad}{\operatorname{Ad}}$$
$$\newcommand{\Orb}{\operatorname{Orb}}$$
$$\newcommand{\Diff}{\operatorname{Diff}}$$
$$\newcommand{\rank}{\operatorname{rank}}$$
$$\newcommand{\HdR}{H_\mathrm{dR}}$$
$$\newcommand{\cH}{\mathcal{H}}$$
$$\newcommand{\Hom}{\operatorname{Hom}}$$
$$\newcommand{\Alb}{\operatorname{Alb}}$$
$$\newcommand{\Jac}{\operatorname{Jac}}$$
$$\newcommand{\alb}{\operatorname{alb}}$$
$$\newcommand{\tor}{\operatorname{tor}}$$
$$\newcommand{\Bl}{\operatorname{Bl}}$$
$$\newcommand{\Rees}{\operatorname{Rees}}$$
$$\newcommand{\Spec}{\operatorname{Spec}}$$
$$\newcommand{\Proj}{\operatorname{Proj}}$$
$$\newcommand{\gr}{\operatorname{gr}}$$
$$\newcommand{\widebar}[1]{\overline{\kern{-0.1em}{#1}\kern{0.1em}}}$$
Discovering Pythagorean Triples
Recently, I learned a fascinating trick to find Pythagorean triples, i.e., \((a, b, c)\) such that \(a^2 + b^2 = c^2\), from a YouTube video by Professor Richard E. Borcherds. Here’s how it works:
Consider the equation:
\[a + b\mathbf{i} = (x + y\mathbf{i})^2\]
Expanding this, we get:
\[a + b\mathbf{i} = (x^2 - y^2) + 2xy\mathbf{i}\]
Taking the modulus squared of both sides:
\[
\begin{aligned}
|a + b\mathbf{i}|^2 &= |(x + y\mathbf{i})^2|^2 \\
a^2 + b^2 &= (|x + y\mathbf{i}|^2)^2 \\
a^2 + b^2 &= (x^2 + y^2)^2
\end{aligned}
\]
By setting \(a = x^2 - y^2\), \(b = 2xy\), and \(c = x^2 + y^2\), we ensure that \(a^2 + b^2 = c^2\).
In other words, we can find Pythagorean triples by choosing integers \(x\) and \(y\) such that \(a = x^2 - y^2\), \(b = 2xy\), and \(c = x^2 + y^2\).
Examples of Pythagorean Triples
Example 1
For \(x = 2\) and \(y = 1\), we get: \[a = 2^2 - 1^2 = 3,\] \[b = 2 \cdot 2 \cdot 1 = 4,\] \[c = 2^2 + 1^2 = 5.\]
For \(x = 3\) and \(y = 1\), we get: \[a = 3^2 - 1^2 = 8,\] \[b = 2 \cdot 3 \cdot 1 = 6,\] \[c = 3^2 + 1^2 = 10.\]
For \(x = 3\) and \(y = 2\), we get: \[a = 3^2 - 2^2 = 5,\] \[b = 2 \cdot 3 \cdot 2 = 12,\] \[c = 3^2 + 2^2 = 13.\]